汕頭鈣熒光光纖成像記錄原理

來源: 發(fā)布時(shí)間:2022-06-23

在體光纖成像記錄的優(yōu)點(diǎn)可以非侵入性,實(shí)時(shí)連續(xù)動(dòng)態(tài)監(jiān)測(cè)體內(nèi)的各種生物學(xué)過程,從而可以減少實(shí)驗(yàn)動(dòng)物數(shù)量,及降低個(gè)體間差異的影響;由于背景噪聲低,所以具有較高的敏感性;不需要外源性激發(fā)光,避免對(duì)體內(nèi)正常細(xì)胞造成損傷,有利于長(zhǎng)期觀察;此外還有無放射性等其他優(yōu)點(diǎn)。然而生物發(fā)光也有自身的不足之處:例如波長(zhǎng)依賴性的組織穿透能力,光在哺乳動(dòng)物組織內(nèi)傳播時(shí)會(huì)被散射和吸收,光子遇到細(xì)胞膜和細(xì)胞質(zhì)時(shí)會(huì)發(fā)生折射,而且不同類型的細(xì)胞和組織吸收光子的特性也不盡相同,其中血紅蛋白是吸收光子的主要物質(zhì);由于是在體外檢測(cè)體內(nèi)發(fā)出的信號(hào),因而受到體內(nèi)發(fā)光源位置及深度影響;另外還需要外源性提供各種熒光素酶的底物,且底物在體內(nèi)的分布與藥動(dòng)力學(xué)也會(huì)影響信號(hào)的產(chǎn)生;由于熒光素酶催化的生化反應(yīng)需要氧氣、鎂離子及 ATP 等物質(zhì)的參與,受到體內(nèi)環(huán)境狀態(tài)的影響。在體光纖成像記錄在腦功能研究中具有較多的用途。汕頭鈣熒光光纖成像記錄原理

汕頭鈣熒光光纖成像記錄原理,在體光纖成像記錄

在體光纖成像記錄對(duì)于成像結(jié)果的處理,需要依賴專業(yè)的圖像分析軟件,分割出目的信號(hào)和背景噪聲,獲得準(zhǔn)確的熒光強(qiáng)度值。光學(xué)成像方法可分為基于熒光的方法和基于生物發(fā)光的方法。光學(xué)相對(duì)于設(shè)備小且較便宜。活的物體顯微成像的缺點(diǎn)是它的有創(chuàng)性,因?yàn)樾枰ㄟ^手術(shù)創(chuàng)造一個(gè)窗口來觀察感興趣的結(jié)構(gòu)和組織。宏觀層析熒光成像可以無創(chuàng)、定量和三維方式測(cè)定熒光,但其空間分辨率比活的物體顯微鏡低(約1毫米)。光學(xué)成像的根本缺點(diǎn)是光的組織穿透率低。由于吸收和散射,熒光發(fā)射的可見光譜中的光只能穿透幾百微米的組織。這個(gè)問題限制了大多數(shù)光學(xué)方法在小動(dòng)物或人類表面結(jié)構(gòu)研究中的應(yīng)用。使用近紅外光譜能夠提高信號(hào)的組織穿透能力,并能降低了組織的自體熒光。常州蛋白病毒光纖成像記錄技術(shù)應(yīng)用在體光纖成像記錄能夠反映細(xì)胞或基因表達(dá)的空間和時(shí)間分布。

汕頭鈣熒光光纖成像記錄原理,在體光纖成像記錄

光纖成像系統(tǒng),所述光纖成像系統(tǒng)包括:激光器,圖像采集裝置,首先一多模光纖,第二多模光纖,光纖耦合器和第三多模光纖;所述光纖耦合器包括兩個(gè)首先一端口和一個(gè)第二端口,兩個(gè)首先一端口位于所述光纖耦合器的一側(cè),所述第二端口位于所述光纖耦合器的另一側(cè);所述首先一多模光纖的一端與所述光纖耦合器的一個(gè)首先一端口連接,所述第二多模光纖的一端與所述光纖耦合器的另一個(gè)首先一端口連接;所述第三多模光纖的一端與所述光纖耦合器的第二端口連接,所述首先一多模光纖的另一端位于所述激光器發(fā)出光束方向的正前方,且所述激光器的輸出端口的中心點(diǎn)和所述首先一多模光纖的另一端的中心點(diǎn)位于同一直線上。

在體光纖成像記錄的根本缺點(diǎn)是光的組織穿透率低。由于吸收和散射,熒光發(fā)射的可見光譜中的光只能穿透幾百微米的組織。這個(gè)問題限制了大多數(shù)光學(xué)方法在小動(dòng)物或人類表面結(jié)構(gòu)研究中的應(yīng)用。使用近紅外光譜能夠提高信號(hào)的組織穿透能力,并能降低了組織的自體熒光。在體外將熒光探針與細(xì)胞共孵育后注射入體內(nèi),用規(guī)定波長(zhǎng)的光激發(fā)熒光探針,較后用高靈敏度的攝像機(jī)記錄發(fā)射的光子。有機(jī)熒光染料價(jià)格低廉,毒性可控,但當(dāng)觀察時(shí)間較長(zhǎng)時(shí),容易發(fā)生光漂白。量子點(diǎn)具有高度的光穩(wěn)定性,有望代替?zhèn)鹘y(tǒng)熒光探針。但由于大多數(shù)量子點(diǎn)都含有鎘,限制了其臨床應(yīng)用。在體光纖成像記錄有望代替?zhèn)鹘y(tǒng)熒光探針。

汕頭鈣熒光光纖成像記錄原理,在體光纖成像記錄

在體光纖成像記錄納米級(jí)成像受到所用光的波長(zhǎng)的限制。有多種方法可以克服這一衍射極限,但它們通常需要大型顯微鏡和困難的加工程序?!边@些系統(tǒng)不適用于在生物組織的深層或其他難以到達(dá)的地方成像。在傳統(tǒng)的顯微鏡檢查中,通常會(huì)逐點(diǎn)照射樣品以產(chǎn)生整個(gè)樣品的圖像。這需要大量時(shí)間,因?yàn)楦叻直媛蕡D像需要許多數(shù)據(jù)點(diǎn)。壓縮成像要快得多,但是我們也證明了它能夠分辨比傳統(tǒng)衍射極限成像所能分辨的小兩倍以上的細(xì)節(jié)。開發(fā)考慮了微創(chuàng)生物成像。但這對(duì)于納米光刻技術(shù)中的傳感應(yīng)用也非常具有前途,因?yàn)樗恍枰獰晒鈽?biāo)記,而熒光標(biāo)記是其他超分辨率成像方法所必需的。偏振是實(shí)現(xiàn)在體光纖成像記錄的關(guān)鍵特性之一。蘇州鈣熒光光纖成像服務(wù)

在體光纖成像記錄利用生物發(fā)光技術(shù)進(jìn)行動(dòng)物體內(nèi)檢測(cè)。汕頭鈣熒光光纖成像記錄原理

在體光纖成像記錄熒光素酶的每個(gè)催化反應(yīng)只產(chǎn)生一個(gè)光 子 , 通常肉眼無法直接觀察到, 而且光子在強(qiáng)散射性的生物組織中傳輸時(shí), 將會(huì)發(fā)生吸收、 散射、 反射、 透射等大量光學(xué)行為 。 因此,必須采用高 靈敏度的光學(xué)檢測(cè)儀器( 如CCD camera)采集并定量檢測(cè)生物體內(nèi)所發(fā)射的光子數(shù)量, 然后將其轉(zhuǎn)換成圖像, 在體生物發(fā)光成像中的發(fā)光光譜范圍通常為可見光到 近紅外光波段, 哺乳動(dòng)物體內(nèi)血紅蛋白主要吸收可見光, 水和脂質(zhì)主要吸收紅外線, 但對(duì)波長(zhǎng)為 590~1500nm的紅光至近紅外線吸收能力則較差, 因此, 大部分波長(zhǎng)超過600nm的紅光, 經(jīng)過散射、吸收后能夠穿透哺乳動(dòng)物組織, 被生物體外的高靈敏光學(xué)檢測(cè)儀器探測(cè)到, 這是在體生物發(fā)光成像的理論基礎(chǔ)。汕頭鈣熒光光纖成像記錄原理