珠海在體實(shí)時光纖記錄方案

來源: 發(fā)布時間:2022-01-27

在體光纖成像記錄相干斷層掃描的局限性是單能掃描生物組織表面下1-2毫米的深度。這是由于深度越大,光線無散射的射出表面的比例就越小,以至于無法檢測到。但是在檢測過程中不需要樣品制備過程,成像過程也不需要接觸被成像的組織。更重要的是,設(shè)備產(chǎn)生的激光是對人眼安全的近紅外線,因此幾乎不會對組織造成傷害。使用光學(xué)反向散射或后向反射的測量成像組織的內(nèi)部橫截面微結(jié)構(gòu),像在體外在人的視網(wǎng)膜上,并在一個其他的病因斑塊在透明,弱散射介質(zhì)和不透明的。在體光纖成像記錄提供含有光子強(qiáng)度標(biāo)尺的成像圖片。珠海在體實(shí)時光纖記錄方案

珠海在體實(shí)時光纖記錄方案,在體光纖成像記錄

在體光纖成像記錄的應(yīng)用,揭示機(jī)體的生理病理改變過程,目前, 在體生物光學(xué)成像技術(shù)己成功應(yīng)用于 干細(xì)胞移植、 壞掉的免疫、 毒血癥、 風(fēng)濕性關(guān)節(jié)炎、 皮炎等發(fā)病機(jī)制的研究中, 可以實(shí)時監(jiān)測生物機(jī)體的生理、病理改變過程, 具有重要的臨床意義。藥物的篩選和評價的應(yīng)用目前 , 轉(zhuǎn)基因動物模型己大量應(yīng)用于病理研究、藥物研發(fā)、 藥物篩選和藥物評價等領(lǐng)域。通過體外基因轉(zhuǎn)染或直接注射等手段, 將熒光素酶或綠色熒光蛋 自等報告基因標(biāo)記在生物體內(nèi)的任何細(xì)胞, 如:壞掉的細(xì)胞、 造血細(xì)胞等上, 采用在體生物光學(xué)成像技術(shù)對其示蹤, 了解細(xì)胞在生物體內(nèi)的轉(zhuǎn)移規(guī)律,不單能夠檢測轉(zhuǎn)基因動物體 內(nèi)的基因表達(dá)或 內(nèi)源性基因的活性和功能, 而且能夠?qū)λ幬锖Y選及療效進(jìn)行評價。南京在體神經(jīng)元活動記錄技術(shù)應(yīng)用在體光纖成像記錄釋放的光子可被跟閃爍晶體相連的光電倍增管檢測到。

珠海在體實(shí)時光纖記錄方案,在體光纖成像記錄

在體光纖成像記錄直接標(biāo)記法不涉及細(xì)胞的遺傳修飾,標(biāo)價能夠在體外培養(yǎng)時主動與細(xì)胞結(jié)合,也可以將標(biāo)記直接注射到動物體內(nèi),間接標(biāo)記法,將報告基因引入細(xì)胞,并翻譯成酶、受體、熒光或生物發(fā)光蛋白如果報告基因的表達(dá)是穩(wěn)定的,標(biāo)記的細(xì)胞可以在整個細(xì)胞的生命周期中被觀察到。由于報告基因通常被傳遞給后代細(xì)胞,因此細(xì)胞增殖也能夠得到體現(xiàn)。體內(nèi)標(biāo)記是指將探針直接注射進(jìn)入機(jī)體,常用的標(biāo)記方法是靜脈注射氧化鐵納米顆粒。光學(xué)成像方法可分為基于熒光的方法和基于生物發(fā)光的方法。

對生物體內(nèi)的突觸結(jié)構(gòu)和蛋白進(jìn)行空間分布的研究時,成像系統(tǒng)需要具備高的成像速度,防止出現(xiàn)生物體移動造成的重影現(xiàn)象;成像的超高動態(tài)范圍和熒光信號的超高線性度:像的熒光強(qiáng)度計數(shù)需要具有對的的統(tǒng)計學(xué)意義證明實(shí)驗(yàn)結(jié)論的正確性,因此圖像的熒光強(qiáng)度值必須能夠精確反映體內(nèi)蛋白、基因濃度的高低,這需要檢測器具有超高的動態(tài)范圍能夠同時記錄強(qiáng)信號和弱信號,并且在此動態(tài)范圍內(nèi)圖像計數(shù)值與真實(shí)的熒光信號對的線性變化以正確反映蛋白、基因的濃度。在體光纖成像記錄整機(jī)一體化,輕巧便攜。

珠海在體實(shí)時光纖記錄方案,在體光纖成像記錄

在體光纖成像記錄,指的是利用光學(xué)的探測手段結(jié)合光學(xué)探測分子對細(xì)胞或者組織甚至生物體進(jìn)行成像,來獲得其中的生物學(xué)信息的方法。傳統(tǒng)的動物實(shí)驗(yàn)方法需要在不同的時間點(diǎn)處死實(shí)驗(yàn)動物,以獲得多個時間點(diǎn)的實(shí)驗(yàn)數(shù)據(jù)。而在體光纖成像記錄則可以對同一觀察目標(biāo)進(jìn)行連續(xù)的查看并記錄其變化,從而達(dá)到簡化實(shí)驗(yàn)的目的。光在體內(nèi)組織中傳播時會被散射和吸收,血紅蛋白吸收可見光中藍(lán)綠光波段的大部分,但是波長大于600nm的紅光波段無法被其吸收,可以穿過組織和皮膚被檢測到。在相同的深度情況下,檢測到的發(fā)光強(qiáng)度和細(xì)胞數(shù)量具有線性關(guān)系。光源的發(fā)光強(qiáng)度隨深度增加而衰減,血液豐富的組織/系統(tǒng)衰減多,與骨骼相鄰的組織/系統(tǒng)衰減少。在體光纖成像記錄用于生成首先一光束。蕪湖神經(jīng)生物學(xué)神經(jīng)元活動記錄技術(shù)

在體光纖成像記錄幾乎不會對組織造成傷害。珠海在體實(shí)時光纖記錄方案

在體光纖成像記錄可見光成像體內(nèi)可見光成像包括生物發(fā)光與熒光兩種技術(shù)。生物發(fā)光是用熒光素酶基因標(biāo)記DNA,利用其產(chǎn)生的蛋白酶與相應(yīng)底物發(fā)生生化反應(yīng)產(chǎn)生生物體內(nèi)的光信號;而熒光技術(shù)則采用熒光報告基因(GFP、RFP)或熒光染料(包括熒光量子點(diǎn))等新型納米標(biāo)記材料進(jìn)行標(biāo)記,利用報告基因產(chǎn)生的生物發(fā)光、熒光蛋白質(zhì)或染料產(chǎn)生的熒光就可以形成體內(nèi)的生物光源。前者是動物體內(nèi)的自發(fā)熒光,不需要激發(fā)光源,而后者則需要外界激發(fā)光源的激發(fā)。珠海在體實(shí)時光纖記錄方案