青浦區(qū)膜厚儀性?xún)r(jià)比高

來(lái)源: 發(fā)布時(shí)間:2023-11-25

干涉測(cè)量法[9-10]是基于光的干涉原理實(shí)現(xiàn)對(duì)薄膜厚度測(cè)量的光學(xué)方法,是一種高精度的測(cè)量技術(shù)。采用光學(xué)干涉原理的測(cè)量系統(tǒng)一般具有結(jié)構(gòu)簡(jiǎn)單,成本低廉,穩(wěn)定性好,抗干擾能力強(qiáng),使用范圍廣等優(yōu)點(diǎn)。對(duì)于大多數(shù)的干涉測(cè)量任務(wù),都是通過(guò)薄膜表面和基底表面之間產(chǎn)生的干涉條紋的形狀和分布規(guī)律,來(lái)研究干涉裝置中待測(cè)物理量引入的光程差或者是位相差的變化,從而達(dá)到測(cè)量目的。光學(xué)干涉測(cè)量方法的測(cè)量精度可達(dá)到甚至優(yōu)于納米量級(jí),而利用外差干涉進(jìn)行測(cè)量,其精度甚至可以達(dá)到10-3nm量級(jí)[11]。根據(jù)所使用光源的不同,干涉測(cè)量方法又可以分為激光干涉測(cè)量和白光干涉測(cè)量?jī)纱箢?lèi)。激光干涉測(cè)量的分辨率更高,但是不能實(shí)現(xiàn)對(duì)靜態(tài)信號(hào)的測(cè)量,只能測(cè)量輸出信號(hào)的變化量或者是連續(xù)信號(hào)的變化,即只能實(shí)現(xiàn)相對(duì)測(cè)量。而白光干涉是通過(guò)對(duì)干涉信號(hào)中心條紋的有效識(shí)別來(lái)實(shí)現(xiàn)對(duì)物理量的測(cè)量,是一種測(cè)量方式,在薄膜厚度的測(cè)量中得到了廣泛的應(yīng)用。白光干涉膜厚測(cè)量技術(shù)是一種測(cè)量薄膜厚度的方法。青浦區(qū)膜厚儀性?xún)r(jià)比高

青浦區(qū)膜厚儀性?xún)r(jià)比高,膜厚儀

白光干涉的相干原理早在1975年就已經(jīng)被提出,隨后于1976年在光纖通信領(lǐng)域中獲得了實(shí)現(xiàn)。1983年,BrianCulshaw的研究小組報(bào)道了白光干涉技術(shù)在光纖傳感領(lǐng)域中的應(yīng)用。隨后在1984年,報(bào)道了基于白光干涉原理的完整的位移傳感系統(tǒng)。該研究成果證明了白光干涉技術(shù)可以被用于測(cè)量能夠轉(zhuǎn)換成位移的物理參量。此后的幾年間,白光干涉應(yīng)用于溫度、壓力等的研究相繼被報(bào)道。自上世紀(jì)九十年代以來(lái),白光干涉技術(shù)快速發(fā)展,提供了實(shí)現(xiàn)測(cè)量的更多的解決方案。近幾年以來(lái),由于傳感器設(shè)計(jì)與研制的進(jìn)步,信號(hào)處理新方案的提出,以及傳感器的多路復(fù)用[39]等技術(shù)的發(fā)展,使得白光干涉測(cè)量技術(shù)的發(fā)展更加迅速。邵陽(yáng)膜厚儀常見(jiàn)問(wèn)題白光干涉膜厚測(cè)量技術(shù)可以對(duì)薄膜的厚度和形貌進(jìn)行聯(lián)合測(cè)量和分析。

青浦區(qū)膜厚儀性?xún)r(jià)比高,膜厚儀

光學(xué)測(cè)厚方法集光學(xué)、機(jī)械、電子、計(jì)算機(jī)圖像處理技術(shù)為一體,以其光波長(zhǎng)為測(cè)量基準(zhǔn),從原理上保證了納米級(jí)的測(cè)量精度。同時(shí),光學(xué)測(cè)厚作為非接觸式的測(cè)量方法,被廣泛應(yīng)用于精密元件表面形貌及厚度的無(wú)損測(cè)量。其中,薄膜厚度光學(xué)測(cè)量方法按光吸收、透反射、偏振和干涉等光學(xué)原理可分為分光光度法、橢圓偏振法、干涉法等多種測(cè)量方法。不同的測(cè)量方法,其適用范圍各有側(cè)重,褒貶不一。因此結(jié)合多種測(cè)量方法的多通道式復(fù)合測(cè)量法也有研究,如橢圓偏振法和光度法結(jié)合的光譜橢偏法,彩色共焦光譜干涉和白光顯微干涉的結(jié)合法等。

靶丸殼層折射率、厚度及其分布參數(shù)是激光慣性約束聚變(ICF)物理實(shí)驗(yàn)中非常關(guān)鍵的參數(shù),精密測(cè)量靶丸殼層折射率、厚度及其分布對(duì)ICF精密物理實(shí)驗(yàn)研究具有非常重要的意義。由于靶丸尺寸微?。▉喓撩琢考?jí))、結(jié)構(gòu)特殊(球形結(jié)構(gòu))、測(cè)量精度要求高,如何實(shí)現(xiàn)靶丸殼層折射率及其厚度分布的精密測(cè)量是靶參數(shù)測(cè)量技術(shù)研究中重要的研究?jī)?nèi)容。本論文針對(duì)靶丸殼層折射率及厚度分布的精密測(cè)量需求,開(kāi)展了基于白光干涉技術(shù)的靶丸殼層折射率及厚度分布測(cè)量技術(shù)研究。白光干涉膜厚測(cè)量技術(shù)可以通過(guò)對(duì)干涉圖像的分析實(shí)現(xiàn)對(duì)薄膜的表面和內(nèi)部結(jié)構(gòu)測(cè)量。

青浦區(qū)膜厚儀性?xún)r(jià)比高,膜厚儀

白光干涉的分析方法利用白光干涉感知空間位置的變化,從而得到被測(cè)物體的信息。它是在單色光相移干涉術(shù)的基礎(chǔ)上發(fā)展而來(lái)的。單色光相移干涉術(shù)利用光路使參考光和被測(cè)表面的反射光發(fā)生干涉,再使用相移的方法調(diào)制相位,利用干涉場(chǎng)中光強(qiáng)的變化計(jì)算出其每個(gè)數(shù)據(jù)點(diǎn)的初始相位,但是這樣得到的相位是位于(-π,+π]間,所以得到的是不連續(xù)的相位。因此,需要進(jìn)行相位展開(kāi)使其變?yōu)檫B續(xù)相位。再利用高度與相位的信息求出被測(cè)物體的表面形貌。單色光相移法具有測(cè)量速度快、測(cè)量分辨力高、對(duì)背景光強(qiáng)不敏感等優(yōu)點(diǎn)。但是,由于單色光干涉無(wú)法確定干涉條紋的零級(jí)位置。因此,在相位解包裹中無(wú)法得到相位差的周期數(shù),所以只能假定相位差不超過(guò)一個(gè)周期,相當(dāng)于測(cè)試表面的相鄰高度不能超過(guò)四分之一波長(zhǎng)[27]。這就限制了其測(cè)量的范圍,使它只能測(cè)試連續(xù)結(jié)構(gòu)或者光滑表面結(jié)構(gòu)。白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于材料科學(xué)中的薄膜微結(jié)構(gòu)分析。日照推薦膜厚儀

白光干涉膜厚測(cè)量技術(shù)可以通過(guò)對(duì)干涉曲線的分析實(shí)現(xiàn)對(duì)薄膜的厚度分布的測(cè)量和分析。青浦區(qū)膜厚儀性?xún)r(jià)比高

白光干涉頻域解調(diào)顧名思義是在頻域分析解調(diào)信號(hào),測(cè)量裝置與時(shí)域解調(diào)裝置幾乎相同,只需把光強(qiáng)測(cè)量裝置換為光譜儀或者是CCD,接收到的信號(hào)是光強(qiáng)隨著光波長(zhǎng)的分布。由于時(shí)域解調(diào)中接收到的信號(hào)是一定范圍內(nèi)所有波長(zhǎng)的光強(qiáng)疊加,因此將頻譜信號(hào)中各個(gè)波長(zhǎng)的光強(qiáng)疊加,即可得到與它對(duì)應(yīng)的時(shí)域接收信號(hào)。由此可見(jiàn),頻域的白光干涉條紋不僅包含了時(shí)域白光干涉條紋的所有信息,還包含了時(shí)域干涉條紋中沒(méi)有的波長(zhǎng)信息。在頻域干涉中,當(dāng)兩束相干光的光程差遠(yuǎn)大于光源的相干長(zhǎng)度時(shí),仍可以在光譜儀上觀察到頻域干涉條紋。這是由于光譜儀內(nèi)部的光柵具有分光作用,能夠?qū)捵V光變成窄帶光譜,從而增加了光譜的相干長(zhǎng)度。這一解調(diào)技術(shù)的優(yōu)點(diǎn)就是在整個(gè)測(cè)量系統(tǒng)中沒(méi)有使用機(jī)械掃描部件,從而在測(cè)量的穩(wěn)定性和可靠性上得到很大的提高。常見(jiàn)的頻域解調(diào)方法有峰峰值檢測(cè)法、傅里葉解調(diào)法以及傅里葉變換白光干涉解調(diào)法等。青浦區(qū)膜厚儀性?xún)r(jià)比高